LOYOLA COLLEGE (AUTONOMOUS) CHENNAI 600 034

B. Sc. Degree Examination – Mathematics Fifth Semester – November 2014

MT 5406 – COMBINATORICS

Date: Time:	Dept. No.	ot No	Max: 100 Marks
Time.	Бери. 110.		

SECTION A

ANSWER ALL QUESTIONS.

 $(10 \times 2 = 20)$

- 1. How many 4-letter words with distinct letters can be got from the word UNIVERSAL?
- 2. Define Bell number.
- 3. Find the ordinary generating function of 5 symbols a, b, c, d, e.
- 4. Define binomial number.
- 5. Define permanent of a matrix.
- 6. State generalized inclusion and exclusion principle.
- 7. Find the rook polynomial for the chess board C given below.

- 8. Evaluate $\varphi(720)$.
- 9. Explain the term cycle index.
- 10. Define G-equivalence between two sets.

SECTION B

ANSWER ANY FOUR QUESTIONS.

 $(5 \times 8 = 40)$

- 11. There are 30 females, 35 males in a junior class while there are 25 females and 20 males in a senior class. In how many ways can a committee of 10 be chosen so that there are exactly 5 females and 3 juniors in the committee?
- 12. (i) Define exponential generating function.
 - (ii) Find the number of r letter sequences that can be formed using the letters P, Q, R and S such that in each sequence there are an odd number of P's and an even number of Q's.

(2 + 6)

- 13. Prove that the element f of R[t] given by $f(t) = \int_{k=0}^{\infty} a_k t^k$ has an inverse in R[t] if and only if a_0 has an inverse in R.
- 14. Derive the formula to find the sum of squares of first *n* natural numbers.

- 15. How many integers between 1 and 300 are (i) divisible by at least one of 3, 5, 7 (ii) divisible by 3 and 5 but not by 7 (iii) divisible by 5 but reither by 3 nor 7?
- 16. Show that the number of derangements of set with n objects is
- $D_n = n! \left[1 \frac{1}{1!} + \frac{1}{2!} \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!} \right]$ elements to a set with n elements. 17. Show that 97 is the 25th prime number.
- 18. Find the number of 6-letter words that can be formed using the letters A, B and C (each twice) in such a manner that A does not appear in the first 2 positions, B does not appear in the third position and C does not appear in the fourth and fifth positions.

SECTION C

ANSWER ANY TWO QUESTIONS.

 $(2 \times 20 = 40)$

- 19. a) Prove that the number of distributions of n distinct objects into m distinct boxes with the objects in each box arranged in a definite order is $[m]^n$.
 - b) Find the ordinary generating function of the sequence $\{(r+n-1)C_{n-1}\}_{r\geq 0}$ by differentiation of infinite geometric series.
- 20. a) Define Stirling numbers of second kind. Formulate a table for S_n^m , for 1 $m, n \leq 6$.

b) State and prove Multinomial theorem. (10 + 10)

- 21. State and solve Menage problem.
- 22. State and prove Burnside's Lemma.
